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I. INTRODUCTION

We consider below the statistical behavior of scalar variables in

turbulent flows. The presence of chemical reactions requires statistical

models for third and higher moments (e.g., A'B' and K'A' B') in order to

close the rate equations. A realistic analysis should not be restricted to

small fluctuations. The results presented here are completely free from

such restrictions. The essential points to be demonstrated are

1) Given A and A , we can obtain stringent statistical bounds on

A' B1 and related moments. These bounds are found to be of interest in

discussing the CalTech experiments (e.g., as reduced by Konrad*).

2) Maximum and minimum third (and higher) moments can be reached only

with Dirac functions (i.e., discrete distributions).

3) We can always realize a statistically acceptable choice of A and

A'  with a few Dirac functions (the minimum number is two distinct ones).

The statements given above hold true when several moments (rather than
only A and A areiven as well as when the means of several variables

Ay a

are given (e.g., A, A' , , ). As one consequence, we shall see that

we can find, for the purposes of modeling, a discrete distribution that

represents the desired set of moments and that is statistically legitimate

for all allowed values of the derived moments (box model).

The role of the higher moments can be illustrated with a second-order

chemical reaction

A+B C

We have the familiar rate equation

dA - dB -K(T)AB

dt" - T 
=

It follows that the product, AB , satisfies

d (AB) -K(AB2 + A2B)

In terms of the Reynolds decomposition

A- A+A'

we find, in the absence of temperature fluctuations,

*Konrad, J.H., "An Experimental Investigation of Mixing in Two-Dimensional
Turbulent Shear Flows with Applications to Diffusion-Limited Chemical
Reactions." Graduate Aero.Labs., California Institute of Technology, Pro-
ject SQUID Tech. Report CIT-8-PU (1976)
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( + 7B ) =-K(AB + A B)

where

= <(A + A'(B + B') 2 >

i2= +A A + A'B + B'

We shall use below this third moment, A , to test the stringency of the

statistical bounds derived.

When temperature fluctuations are included, a joint distribution in T,

A and B need be assumed to close the rate equations. Although we do not

develop temperature models in detail in this report, we note that many of the

statistical (lower) bounds derived for A do apply to the temperature

fluctuations; for example, the third moment of the concentration satisfies

-YAA' (A' -A)

for any 0 < A < I and 0 < A' < A(l - ); similarly, the temperature

third moment satisfies

-~2

T' >-T2- (T- 2

T
-7

for any T and any T' positive. The usefulness of the A' bound is

shown below by ruling out the model A' = 0 over the edges of a mixing

layer.

The statistically allowed values of any set of moments can be shown

(Appendix 1) to form a domain that is necessarily convex; therefore, the

domain has no "holes." This property is very useful when a numerical scan

is performed.

The statistical bounds that we obtain are "sharp"; that is, we can

prove in each case that the equal sign is realized by a (unique) probability

distribution that is discrete. It follows that the bounds obtained are

"best bounds" and cannot be improved.

Although we apply here our analysis to mixtures with two species (He

and N2 ), the results derived for the (molar) concentration A (and its

2



conjugate B 1 - A) apply to each concentration of an n-component

mixture.

We develop a model for the probability of the molar fraction by

choosing a discrete distribution that realizes the mean and second moment of

the molar fraction as well as the mean and second moments of the mass

fraction. The model selected contains a free parameter. Since the empir-
ical evidence is that the mean entropy of mixing is below the maximum

allowed statistically (in qualitative agreement with the dominance of large

scale structures in the turbulent mixing), we fix our free parameter so as

to minimize the mean ertropy of mixing.

II

3
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II. STATISTICAL ANALYSIS

To illustrate the main features of our statistical analysis, we discuss

below in detail the behavior of the second moments and we give results for

the third and fourth moments.

We introduce the analysis with a useful diagram, the "box" diagram which

gives a concise representation of a (one-dimensional) probability

distribution.

Given a P(A) > 0 , the quantity

0A  dA(1)
T(Ao0)  f P(A) dA

is the fraction of time during which A < A 0 The graph of the inverse of

the map T(A) is the box diagram. For example,

P(A) : A6(A-l) + (l-A)6(A) (2)

gives r(A) = (1 -A)H(A) + AH(l -A) where the heaviside function is

H(A) = ( A 0>

0i A <0

and then,
fo 0 <T<l1 -AA(- ,- (3)

= lj l-A<T<l(3

(see Fig. 1).

We will now consider the bounds on the second moment for a given value

of A . We first observe that

0 < A < 1 (4)

implies the two inequalities

0 < AP(A) ; AP(A) < P(A) (5)

because P(A) > 0 Integrating both between 0 and 1,

0<< 1 (6)
5
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By a similar reasoning, we can prove

A <A < (7)

To prove the upper bound, we have successively

A < 1 by (4U), i.e., the upper bound

A2 <A by (4L), i.e., the lower bound (8)

A2 <A because P >0, q.e.d.

To prove the lower bounds, we use Reynolds' decomposition

A = A + A' (9)

Thus,

2> 2 -7 2 -A -- :  (A+A')2 + A' > A because A' > 0, q.e.d.

The bounds on the second moment have been obtained by elementary methods.

We can similarly show that the bounds ( A and T2 = A2 ) are realized

by unique discrete distribution.

For the upper bound, we have successively

AA

A 2
=0

and

1(AI- A2)P(A) dA = 0

However, the integrand is positive (or zero) by Eq. (8) and hence the inte-

grand must vanish:

(A - A2 )P(A) = 0 (10)

If P is to be nonzero, we must have A = 0 or A = 1 and, therefore,

P(A) : (1-e)6(A) + c6(A- 1) (11)

6



Since A is given, c is determined. In fact, by direct computation,

= and

P(A) = (I-A)6(A) + A6(A-l) (12)

which is the distribution given in Eq. (2) above. We note that the P(A)

that realizes the upper bound of A , Eq. (12), is uniquely determined by A.

We can view relation (12) as a consequence of (10) and of L. Schwartz'

theorem x6(A) = 0

The lower bound is also realized by a unique distribution. We have

from (7L)

A2 =A

or

(A - A )P(A) dA f (A - A)P(A) dA 
=  A'P(A) dA

As for the upper bound, the integrand is positive or zero and, therefore,

A'2P(A) = 0

or

(A 2A) P(A) = 0

It follows that A : A if P 0, or

P(A) 6 6(A - A) (13)

This distribution can be represented by a box diagram as

6( A - A) =H(14)

1

This result completes the proof that both extreme values of A are

realized, for given A , by unique, discrete, probability densities.

A summary of the relations obtained so far is obtained in describing

the statically allowed values of A and A as a domain in a plane with

7



coordinates A, A1 The domain of moments M1,2 is shown in Figure

2 that represents

_ A2 < A7 <15
M12 :(<A<I 2 <Aj (15)

We note that the maximum width of the domain occurs at A = 1/2 and is

W12 1 1/4 = .25 . Clearly the maximum width of the statistically allowed

domain should be large compared with the experimental error if a statisti-

cally significant experiment is contemplated. We show below that the Cal

Tech experiments amply fulfill this requirement.

We recast our result in terms of the centered moment A' by means of

the identity

A' =A (16)

The domain of statistically allowed (A, A') pairs is readily shown to be,

from Eq. (15)

M12 O < A < 1 ; 0 < A < A(I - (17)

In Figure 3, we show a diagram of M12 . We illustrate our theoretical

bounds with the Konrad data in Figure 4. In this and similar following

figures of this section

B = N2  concentration (18)

= similarity variable across the flow (19)
X 0

= 1 M (He) 0 (The He is premixed with A to (20)
MN2  achieve molecular mass equality)

s = I = Konrad's mass ratio parameter

r = .38 = velocity ratio (He is faster)

In view of the fact that B is monotonic in the similarity variable

y/(x-x o ) , we may plot the experimental data on the diagram of Figure 2

using the B axis as a "stretched" similarity variable. The resulting

diagrams, Figures 4 and 5, show two alternative (and elivalent) representa-

tions of the second moment of the N2  concentration B and of its

8



statistical bounds as dictated by the corresponding values of B . Konrad

gives pluts of both the Gaussian measure for the second moment /B2 and of

the (second order) mixedness parameter

IA'B'I A' __ 
2

'- (21)
B A(l - A) A(l - A)

Readings of the reproducibility of the similarity profiles and comparison

of values obtained for the moment B and B from the distribution

functions vs those obtained from the Konrad plots indicate an "experi-

mental error bar" (or uncertainty) of ±0.01 on the scales indicated.

Sensitivity of the bounds to errors in B is estimated by setting B =

B o ± 0.01 Then at y/(x - xo ) 0 0 (center of flow),

6L2  ±0.011 (22)

6U2  ±0.010 (23)

6W2  0.001 (24)

where W2  U2 - L2 <0.25 (25)

We see that the width of the statistical bounds is less sensitive to error

than the lower and upper bounds themselves. The equivalent shift in the

similarity variable near y/(x - xo) 0 is estimated to be

6(y/(x - X ))- -0.004.

In conclusion, statistical analysis of the second moment indicates that

the experiment is clearly statistically significant and that the second-

order fluctuations are on the low side in the central portions of the flow.

As a final point in the statistical analysis of the second moment, we

give a constructive procedure wherey,~ given any allowed value of the pair
(A, A (or alternatively of (A, A')), a discrete distribution is found

that realizes the given values. The construction is based on the results

obtained on the realizability of the extreme values of the moments. In

particular, we have demonstrated that maximal fluctuations are achieved by

discrete distributions. Exploiting the convexity of the domain of values

9



of (A, A ) proven in App. 1, we proceed as follows (Fig. 6). At points

a and b we must have

Pa = c6(A) + (I - e)6(A - 1) (26)

Pb = 6(A - Ao) (27)

We now form the (convex) combination

P = XPa + (1 - X)Pb (28)

where 0 < X < 1 (29)

The resulting distribution is given by the box diagram, Figure 7. Straight-

forward calculation (best carried out with the general method of the char-

acteristic equation given in Section IV) yields

A2 AA3
1 1 -A 3

£2 :1- A A- A (30)
1-A

A-
3 A3(1 - A3)

where A3  is bounded above and below from the requirements, respectively,

that e be positive and be positive

-< A <- (31)

Three special cases are particularly interesting since they correspond

respectively to: (1) maximal A moments; (2) minimal A moments; and

(3) symmetric A and B moments. The three special cases are given in

full in Figure 8. The corresponding cells are obtained from Figure 6.

To discuss moments higher than the second, we need some additional

tools. These are incorporated in the following inequalities:

1. Hblder's inequality. f and g are arbitrary and P is positive.

10



Then,

fP(h)P(e) da [ q(c)P() d] >f f(a)g(a)P(a) da

Ifo fo 0(32)

provided

1/p + I/q 1 (33)

or

-p l/p q/
fq p /q > 7 (34)

Equality holds if, and only if,

fP = X gq (35)

Furthermore, the Cauchy-Schwarz inequality corresponds to p = q = 2; that

is

- .(36)

with equality at

f = Xg (37)

The conditions for equdlity are essential in our analysis since they allow

us to determine the realizations of the extreme values of the moments.

2. Jensen's inequality. If O(a) is convex (i.e., 0" > 0 throughout

the domain of interest (0 < a < 1)), then

> (&) (38)

3. Tchebytcheff's inequality. If f and g are similar (both increase

or both decrease in the interval 0 < a < 1), then

fg > fg (39)

Utilizing these inequalities, we find the lower and upper bound on the

11
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third moments, given A and A,

A_< < -A < A (40)

We confine our discussion to the lower bound since the upper bound can be

treated by similar methods. To establish the bound, we use the Cauchy-

Schwarz inequality, Eq. (36), with

f = A3 / 2 , g = A1/2  (41)

The realization of the lower bound is obtained from Eq. (37)

A3/2 = A11 2  (42)

whose roots are

A = 0 and A = X (43)

Therefore, the minimum of A is realized by the probability density

P(A) = w6(A) + (1 - w)6(A - X) (44)

From the given moments,

= (I - w)A (45)

and

A = (1 -w)X2  A A (46)

Hence, -
X, = A (47)

Substituting Eq. (47) into (45)

1- w - 2 (48)

which completes the determination of P(A) Using Eq. (44),

P(A) A A 6(A) -6 A (49)

A1 2
12



In terms of the box diagram, we can symbolize this distribution as in

Figure 8.

An entirely analogous discussion of the upper bound is obtained with

f = AB1/2 , g = B 2  (50)

The resulting extremal distribution is P1 of Figure 8.

The statistical bounds established in Eq. (40) are sufficiently

stringent to give information on the experimental values of B that can

be obtained from Konrad's paper. In Figure 9, we show the successive

restrictions obtained by statistical considerations when we use the infor-

mation that B is given and when we use both B and B . Our estimated

experimental error is the one discussed in the context of B . The

maximum width of 1/16 is the maximum of the difference between upper and

lower bounds in Eq. (40). The sensitivityof the bounds to errors in B
T2and B is readily estimated. For B = Bo ±0.01, at y/(x - xo) = 0, is

6L3  ±0.013

6U3  ±0.010

6W3  0.003 , W3  0.039

If both B and B2  are varied as

B= Boo ±0.01

B = B0±0.01

we find comparable variations in the bounds.

It is of interest to restate the bounds of Eq. (40) in terms of the

centered moment A . From the relationship

A3 :A + 3AA'+ A' (51)

we obtain

7 -7( -.). (1-A -A(2
AW- - A ' T  " 2)< A'--- < A'2 ( ) A'-7 (52)

-A

An immediate corollary of these bounds is the determination of the allowed

domains of positive (negative) skewness. These are shown in Figure 10.

13



A third-order mixedness, R3 , is introduced by analogy with Eq. (21)

'B-' - A-2 - -_L

R3 = - 3 (53)

Clearly, 0 < < 1 . A plot is shown in Figures lla,b for two of

Konrad's flows in terms of mass fractions. R3  appears to be systemati-

cally asymmetric.

A discussion of the fourth moment can be carried out somewhat analogous-

ly to our previous discussion of the third moment.

The statistical bounds can be summarized in the following results (the

bounds are proven in Section IV).

1. For given A we have the broad bounds

S<AT< A (54)

2. For given A and A we have

A

A- + + - - (56)

-2( 1 A )2

3. If the three moments, A, A and A , are all given, then

2 y -7 T 2AT A77 (A A A )
A > A+ (57)

A < ( A2 A

A < A (58)
-- 7

A plot of the successively shrinking ranges of the upper and lower bounds

on B obtained from Konrad's data is shown in Figure 12.

The sensitivity of the stringent bounds on variations of the lower

moments is approximately the same as for B and B

14
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The relation between the total moment B and the Kurtosis is obtained

through the Reynolds decomposition which yields

4 i4 -22 -T TB = + 6B B' + 4B B' + (59)

Upon use of (51), we find

Kurtosis- B  3  4i T B (60)

B' (B B)

A plot of the Kurtosis across the flow is shown in Figure 13. The Gaussian

value of 3 is nearly achieved at the center.

15



III. INCOMPRESSIBLE FLOW WITH VARIABLE DENSITY

In this section, we characterize the state of an incompressible flow

with variable density by means of appropriate state functions. In parti-

cular, the (mass) density and the entropy of mixing are calculated as

functions of the mass fractions, and the relations among molar and mass

variables are given.

To establish our notation, we recall that for a single component gas

two measures of density are useful; the mass density p and the molar

density tC They are related through the number of molecules per unit

volume, n (number density)

p = m n = MKr (61)

where m = mass of one molecule

M = m x Arogadro's number (62)

= mass of one mole

The gas constants are related by

R = W (63)
m M m

where k is Boltzmann's constant. The equation of state of our ideal gas

thus acquires two possible forms in terms of molar and mass densities:

p = nkT = OTT = PRmT (64)

Correspondingly, for a binary mixture, we have two measures of concentra-

tion:

1. Mass fractions
Pi P2  (65)P1 + P2 P1 + P2

with

a + 1 (66)

and

0 < , < 1 0 <a <1 (67)

17



2. Molar fractions

A X2 (68)A X1 + 2  , = +2

with

A+ B =l (69)

and

0<A< I , 0<B< 1 (70)

We adopt by convention the correspondences

1 -E ) A heavier

2 < 8 - B * lighter

The equation of state for a mixture of two ideal gases can be written,

assuming Dalton's law of partial pressures,

p= PI + P2

=if T = (Pi + X 2 ) AT (molar form)

= p T = p(-L+ -L XT (mass fraction form) (71)

An incompressible flow with variable density is characterized by the

assumptions

p = p = constant across the flow (72)
T = T = constant across 

the flow

We then see that in molar variables

If= 4Y + if = i = constant across the flow (73)
1 2

while in mass fraction variables

P constant 0 constant (74)

18



We introduce the normalized density

P*= 1 A A + 1 (75)Plight I-a -

where

Plight (76)

A 1 (77)

We can choose without loss of generality, 0 < A < 1 . Thus for an

He - N2 mixture, A = 6/7 0.86 and for an H2 - 02 mixture, A = 15/16

0.94.

We observe that p. is a rather steep function of a for L I

and thus p. is statistically independent from & except for very weak

turbulence. In contrast, p. is linear in A and thus p. and A are

equivalent statistical variables. The relationship between the molar and

mass fractions is therefore nonlinear. We have, in fact,

A = (1 - A) I -O A(a) (78)

B -1 a (79)
1 -A

and the inverse relations

Aa 1- A(l -A) (80)

8 : (1 - A)

A graph of the relation A(a) is shown in Figure 14 to show the increasing

statistical independence between A and a with increasing A

Another nonlinear state function of the mass fraction is the entropy of

mixing. The experimentally observed pure N2 and pure He probability shows

that mixing is very slow on the time scale of turbulence variations

(~ integral scale/root mean square turbulent velocity). Further, the

probability profile of pure He is approximately 2-3 times thicker than the

19



probability profile of pure N2 in qualitative agreement with the concept

that a pocket of pure N2 folded by a large scale eddy into the He-rich

region should be mixed by molecular diffusion about 2.6 times faster than a

pocket of pure He folded into N2 (VHe/VN? = mN ?/mHe = /7 - 2.65). We

show below that choosing a probability distribution with low entropy of

mixing is in rather good agreement with experimental evidence. In this

section we calculate the entropy of mixing and give some of its properties.

For a single ideal gas we can write, for the specific entropy,

S =Cvm Zn(T/Tref - Rm tn(p/pref) (82)

where Rm  is given by Eq. (63). For a binary mixture, we have

S(mixture) =S + (83)

The entropy density is obtained as PSspecific' Substituting (82) into

(83)

St aC T___+ Cn Tn T +

a ref ref

-aR in- R n - (84)

a Pref Pref

We choose for the variable density, incompressible flows that we analyze

Tref = Texp = constant (85)

Pref = Plight(a) (86)

The resulting expression for the specific entropy is

Smixt - -R[ 2n(ap*) + 0in( p,)] (87)

which, using Eq. (75), reduces to

M in a + (D - a)n(1 - a) +1 Aa in 1 (88)

1- 1i 1- [CL-j

20



The normalized entropy density is given by

MS r 1R [a 9n (1
P*Smixt 9 1 - A[ a + 1 - - Aa

(89)

The nonlinear behavior of the specific entropy is shown in Figures 15 and

16 for physically interesting values of A. In Figure 17 we see how the

entropy density combines the nonlinear features of p, and of Smixt

As a simple example of the behavior of the mean entropy of mixing, we

observe that for A = 0 (p = 1) we have from (88)

SM
ct (A n A + B in B) (90)

Thus a simple computation shows that the mean entropy associated with the

"nonoverlapping" probability of Figure 1 is exactly zero.

i.

Smix A B 0 (91)

while the entropy of mixing for the distribution of Figure 14 is

S mix (M - (Akn A + BknB) (92)
Aa

It is not difficult to show that (91) is minimal for given A while (92)

is maximal for given A .

We shall use below the distribution given by Figure 7. In this case,

f - nA 3  kn(l -A 3 )1
Smix M ( - ) 1- + ---- (93)

Ma 3 3~

Thus for the distribution of Figure 7, S mi/(A - A) is a function of themi x
single parameter A3  and can be minimized analytically.

21



IV. GENERAL METHOD FOR THE DETERMINATION OF STATISTICAL BOUNDS

In this section, we first outline a general technique to obtain

statistical bounds that are sharp (i.e., "best bounds") and to establish

the domain of moments for which they are realized. We then give several

families of useful bounds.

The essence of the method is the close relation between the eaualitv

condition in the Cauchy-Schwarz theorem and the characteristic equation

for a discrete probability distribution.

Consider a discrete probability distribution of general form

n

P(A) : Z Ei6(A - A.) (94)
il

Using Dirac's identity

(A - Ai)6(A - Ai) = 0 (95)

we see that
n

IT (A - Ai)P(A) : 0 (96)
i=1

so that the algebraic equation

n

¢(A) = IT (A - Ai) = 0 (97)
i=1 i

determines the locations of the masses of P(A) . We call € 0 the

characteristic equation for (94). We can actually determine the Ai's as

functions of the moments as follows. Multiply (96) by any function F(A)

and integrate from 0 to 1, obtaining

n

((A) (A - Ai )  = 0 (98)

If we choose, in particular, F = A°=1, A, A2 , ..., A n- , we obtain n

linear equations for the invariats of the matrix
Lij = 6 (no sum on i ) (99)

3 ..ij
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For example, for n = 3 , the linear equations are

A II + Al2  13 = 0 (100)

A A 1 + A 1 2 - A 3  0 (101)

A"- 1 + A 2 1 -3 0 (102)

where

11 = A1 + A2 + A3  (103)

12 = AIA 2 + A1 A3 + A2A3  (104)

13 = A1A2A3  (105)

By writing Eqs. (100)-(102) as a matrix equation

A2 A 1 T~ 3

3- A7 12 AT (106)

- A A 131 A
_ T37] IT

we can obtain the I' s in terms of the Cramer determinants of (106).

Thus, with obvious notation Nk
I = k (107)

It follows then quite generally from Eq. (97) that the Ai 's are the

n roots of an n'th order polynomial whose coefficients follow from (107)

N An - An-1 NI + ... + (_1)nNn = 0 (108)

The locations Ai of the masses are then determined by establishing that

Ni > 0 and Nn < N0 N0 is always positive by Hankel's inequality.

This is established as follows:
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nXnx AA1+j xi> n (~ x Ai)( xA)) > 0 (109)
i=O j=O i=O j=O

for any choice of real xi  Thus Ai+j  is positive definite and has a

positive determinant.

The weights Ei  are also readily characterized through Eq. (97).
n=1

Multiplying (94) by IT (A - Ai) , we have in fact, after integration,
i=1

n=1 n-I

TV(A - A. = nT(An - Ai) (110)
i=n i= n

To obtain the lower bound on AT , we write the Cauchy-Schwarz inequality

f7gT>f (111)

with the choice
n

g - (-1)n+l1TAi (112)

i=1

f + g (113)

Substitution of Eqs. (112) and (113) into (111) yields

To obtain the lower bound on A , the upper bound on ALnl , and the

upper bound on A , we multiply (112 and (113) successively by A

B , (AB) . For the lower bound on A~n+2 , we return to the forms (112)

and (113).

As a simple example of the method, we establish the least upper bound

on A for given A, A2 , and A . Since we require the upper bound on

an even moment, we consider the distribution of Figure 18. The character-

istic equation is

A(A - 1)(A - A3 ) = 0 (114)

averaging

KA(A -)A> - Ao<A(A -1)> 0 (115)
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Thus,
A3  A -A 

(116)

A - A

To show that A3 : 1, we observe that <A(A2 +1 - 2A)> >0. The

location of the "middle" mass is thus determined without knowledge of the

weights. To find e we note that

A(A - 1) = cA3(a3 - 1) (117)

Thus,

(A A) (118)

(A7 - A7) (A7 - 2A + A

the proof that c < 1 is analogous to the one for A3 < 1 . Having estab-

lished the realizability of the limit, we construct the Cauchy-Schwarz

inequality with

f = A 2(1 - A) 2A (119)

g = A2 (1 - A)2  (120)

and find after simplifications that

A <- (121)

We note that the proof given establishes Eq. (121) as the "best bound" for

in the following sense. The right-hand side of (121) is the least

upper bound on A for all probability distributions of given A, A

and A

An important shortcut for the odd moments is obtained from the
"renormalization theorem." Given that we have established

f f2(A)Dl(A) da f g2(A)D (A) dA > [f fgD1 dAl (122)
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it follows that

1 \2

fo f2D1dA -fo Ag 2D Id f Ag dA )(123)

The proof is simple. Since(122) holds for all DI , we can choose DI of

the special form aD2  for any D2 . (The passage from (123) to (122) is

not legitimate, in general.)

We now consider several important families of inequalities. First,

consider a variable a , 0 < a < 1 , and its conjugate, a = 1 - a
i.e., either a mass or a mole fraction. Applying Cauchy-Schwarz to

f=a , g=1 (124)

we obtain

_1 (125)

where I f0 D(a) da . If D is a probability density, = 1 The

presence of the 1 allows application of the renormalization procedure.

The Cauchy-Schwarz limit for (125) is a = A , i.e., a single mixed cell

P(a) = 6(a - a-) (126)

Renonmalizing (125) by a we find
-72

> a (127)

The Cauchy-Schwarz limit is 3/2 = X 112  ie a 0, a = a

Therefore, at equality,

-2 / c ta
P(a) =- 6(a -I + a a6(a) (128)

Renormalizing Eq. (125) by S , we find

e a< (129)
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or, eliminating a

a a _(-) (130)
1-a

The Cauchy-Schwarz limit for Eq. (127) is

3 = - (131)

with roots

0 (132)

i.e., a pure a and a mixed cell. Therefore, at equality

P (a -) 6 a - a a + a -2 6(a) (133)

1-2aL + a I -1- 2; + a2

Renormalizing (125) by aa , we find

-T- 2 -7-a < <aT*. (134

or, eliminating ,

-7 -7 7 2

a < a - (135
a-a

The Cauchy-Schwarz limit was discussed following Eq. (114).

The lower bound on a requires two mixed cells. We find
-2 3 2

a > L + -(136)

aX -a

The a inequalities and some of the higher ones are summarized in the

trees, Figures 18 and 19. For all cases, the equality corresponds to a

unique discrete distribution. This situation persists when we include
"skips." These are most readily derived from a generalization of Eq. (125)

which is obtained from H6lder's inequality

In-2 .an- > an-1 (137)
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We observe that for n = 3, Eq. (137) becomes (125). We readily find,

following the tree of Figure 20, the bounds on a3 given only - , i.e.,

a < (138)

The equal s5ign of the lower bound is realized by (126) just like the lower

bound on a2 . Similarly, the bounds on a4  given , and a are
-3 3

L < - (a) (139)
-2 ( - )4

and they are realized, respectively, by (128) and (133). In Appendix 3

we prove a strong version of this result.

The inequalities for p.a are most readily obtained by observing that

renormalizing Eq. (125) Dy the (positive) quantity p. gives us

p. • > _p. (140)

Using the equation of state and the relations given in Appendix 4, we can

recast (140) either as a lower bound on * (given &)

. > 2 (141)

1 -A

or as a lower bound on p.a (given a)

P1 > - (142)

Following the tree of Figure 21 or the (simpler but less obvious) alterna-

tive tree of Figure 22 and using the equation of state, we readily obtain

the lower and upper bounds on p.a for given a and a as well as the

upper bound on p.O for given a a and a3 . The lower bound on p.a

for given a, a and a initiates a new tree and is relatively difficult.

We thus give it in detail. We show, in fact, that given

S, ,a , p.a (143)

we have the upper bound on a

a < aL (144)
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where

- [ P*(1 ( I .. +

Clearly the (least) upper bound on i is equivalent to the (greatest)

lower bound on p.-a (given a,a2 and a 3

We choose

-, (a2 + c) (145)

g = P '- (146)

To obtain the Cauchy-Schwarz inequality, we square f and g , obtain the

product fg , and average. The result is

pLa4  . - P.O + 2c [ ( Ip- +

+ c2 (I + =p. )p*O- > 0 (147)

The terms have been arranged as coefficients of cn to facilitate

cancellations.

Using the equation of state relations of Appendix 3, we obtain from

(147) after several cancellations, an inequality which is linear both in

p.a and cX . (The slight variant in the choice of f and g was
designed to achieve this goal):

+2c - + +-

2- +

+ c2[p. (E- > .] >0 (148)

To ensure that the inequality yields the least upper bound on (over the
probability densities of given I , & , a , and p ), we rewrite (148)
as
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F(c)A> a 2 (149)

and minimize F with respect to c . We have

F(c) OT a a ] + 2c ( *01 +

+ c2[T( - )- j (150)

The curvature of F is positive by virtue of (142) and the first deriva-

tive vanishes at c = c0

i D*  - ) - -

I

co : 'a (L - a O2 (151)

Substituting this value of c into (149) we obtain, after some algebra,

a < a3 as given in (144).

We now examine the equal sign condition, i.e.,

f = Ag (152)

Using (145) and (146), we have

P 2 + c) = Xp* (153)

Since p, has no zero for a between 0 and 1, Eq. (153) gives

2 _ ax + c = 0 (154)

We now determine X and c by averaging the characteristic equation

(154) and also multiplying by a and averaging:

a- x + c = 0 (155)

a a X + ;c = 0 (156)

We have as solutions of (155) and (156):

X - a (157)
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C- (158)_2
a -a

It is clear from (154) that the probability density that realized the

equality is the two-mixed cells distribution:

P(a) = e6(a - aI) + C26(a - a2) (159)

where

O1 +a 2  (160)

a a2  c (161)

as given by Eqs. (157) and (158). In order to complete the realizability
proof of the equal sign, we must show that (159) has all four parameters,

1 . c2 a1 and a2  between 0 and 1.
We first discuss the locations and prove that

a1 +a 2 > 0 (162)

1 a2 > 0 (163)

and a1a2 < 1 (164)

Clearly, Eqs. (162), (163) and (164) imply that a1  and a2  are between
zero and one. To prove these inequalities, we multiply the characteristic

equation for (159) by an arbitrary function F assumed similar to a . We

have

F - -(aI + a2 ) + Fia2 = 0 (165)

and (F = 1)

---" (a1 + a2 ) + a 2 = 0 (166)

Equations (165) and (166) determine 1 + a 2  and a a2
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a1 + 2 (167)

and

CL( 2 C a. - c . (168)

By using Tchebycheff's inequality, we find

Fa .1 > F a (169)

because F is similar to a Also

Fa I > F a (170)

because F is similar to 2 and renormalizing (169) by a

Fa a > Fa • a (171)

This completes the proof of Eqs. (162) and (163).

To prove that a1a2 < 1 , we need

Fa2 _Fa 2 < FT • 1 -F a (172)

We rewrite (172) as

< F(a)> > 0 (173)

with p given by

ip(+) = a* i - J - 2- (174)

But ip is similar to a because

£p,(c) = j +a2 _ 2c (175)

is linear in a and

*'(0) j + a > 0 (176)
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i'(1) = (1 - 2 + '> 0 (177)

so that

ip'(a) > 0 for 0 < a < 1 (178)

We also note that

-=0 (179)

Applying Tchebycheff to (173)

F > F =0 q.e.d. (180)

We have completed the proof that a1  and a2  are between 0 and 1.

We note that a1 + a 2  and a1a2 can be expressed either in terms of

0 or in terms of pa . This shows that the two-mixed cells distribu-

tion realizes either (I, , O , a ) or (1, o, a, p*a).

We now prove that the weights c and £2 of Eq. (159) are between

zero and one. By introducing

al a 6 1  (181)

a2 = a + 62 (182)

we find that

- =0 (183)

T= 1 (184)

imply
62 61(151 1 + 62 7 £2 61 + 6 (185)

A simple calculation further shows that

01 6162 (186)

Since C is given (and positive), 61 and 62 have the same sign. It

follows then from (185) that £1 > 0 and F2 > 0 Since their sum is 1,

both c and £2 are between zero and one.
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Another important family of inequalities is the one pertaining to p.

Clearly, from Cauchy-Schwarz

-2
•* P* (187)

This is a lower bound on p0 for given p. . The tree of Figure 23 elds

the relevant bounds except for the lower bound on p* for given a, a,

p*a . We proceed to prove this bound separately.

We choose

g = -p.182  (188)

f : + g =p.((a - a2 ) - p*1  (189)

where

= (p. - p~l)(ci - ci2) (190) !

= 1 -(191)

Thus, Eq. (190) is the characteristic equation for two mixed cells with one

of the singularities expressed in terms of p. We use the equation of state

relations of Appendix 3 to eliminate products of p. and a (to a power).

After some algebra, we find

f 2 = p 2 _ 1)2 + p. (.+ 1)(i 2 _ - )
2 2 2a 1 ) 22' 22 12

f *+ * P*I +  1)l +a A +  A-

+L c2 Pl + 2p + + 1 - 2_* ic (192)

g2 = (pla2)2 (193)

fg = a(P*I) P (k- 2 ) k - P*I] (194)

By using the Cauchy-Schwarz inequality, we find
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+P* .(P* I+l)c -)a P*l +a -p* 1  2 2

T2( -2 +_Z2_AA_

> ( - (195)

The fact that the inequality represents a lower bound on P follows from

the fact that its coefficient on the large side is positive. The fact that

the bound is the greatest lower bound for given a , a , and pcx follows

from the realizability of the two-mixed cells distribution which was

obtained above, Eqs. (152) through (186).

The last family of inequalities that we consider are bounds on the mass

fraction, given the mole fraction. From the tree of Figure 24, several

follow.
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V. MODEL SELECTION

In this section, we first describe our process for selecting a model

probability density. Having chosen a model with a free parameter that is

adjusted to minimize the average entropy (density), we compare several

features of the model against the data reduced and presented by Konrad.

In selecting the model, we find

1) At the edges of the mixing region, the experimental probability

distribution is sufficiently skewed to rule out symmetric models.

2) The experimental probability for finding pure N2 and pure He is

sufficiently large to rule out models that do not have strong spikes at

molar fractions close to one or zero.

3) We find that the third moment is rather insensitive to the selection

of a model providing the model is statistically correct.

We conclude that the most satisfactory model distribution is one for

which the average entropy density is minimized.

With regard to the skewness factor, we consider first a square hat in

A (Figure 25). The probability density has three parameters and it is

thus fully specified by T A , A . The moment equations are

f P(A) dA = H(R - L) 
(196)

A R + L (197)

- 2

A2  1 (R 2 + RL + L2  (198)

with solutions for the edge locations

R = A + 61 (199)

L = A- 61 (200)

where

61 = 3 A' (201)

and finally for the height

H- 1 (202)
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The fit to Konrad's equal mass flow is shown in Figure 26. Unacceptably

large probabilities are found for negative molar fractions. The origin of

the difficulty is the large skewness of the edge-flow distributions. The

point is illustrated in Figure 27 by a simple triangle distribution that

cannot be fitted by a legitimate square hat. The region of moments,

A, A '  for which a square hat is statistically acceptable is readily

obtained from R < I and L > 0 . This region is shown in Figure 28,

together with the region allowed by the less restrictive but still symmetric

model

A' 0 (203)

The various boundary curves are given by the following functions of A

I2 : 2/3

2 /3

3 2A2  (204)

4 2g2

5 A(1 A) =AB

In Figure 29, we show the value of the ratio

r :model (205)
Qexperiment

where

Q =AB (206)

The value of QU corresponds to the upper bound for Q given A and

; similarly QL corresponds to the lower bound for Q , given A and

A The graph emphasizes the fact that towards the edges of the mixing

region any symmetric model would be in disagreement with experiment.

A model with much less symmetry and some promise of describing a flow

with low mixing is defined by

0 = (AB)' = AB' + A'B +A'B' - AB' (207)

Equation (207) is a quadratic for A' once B' is eliminated (B' = -A')

and the resulting probability density is given by
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P(A) = s1 6(A - A1) + e 2 6(A - A2 ) (208)

where

A1 = 1- D A =1+D (209)
2 2 2

= L(1 + D A (210)

E 1.( _ I D(211)
and 0 =D 1- 4AB 

(212)

We note that for this model

A2 = BI , A = B2  (213)

Furthermore, Eq. (207) is exactly equivalent to the requirement

A2B 2 = min (for fixed A, A ) (214)

In Figure 30, the values of C 1 and of E2 are superimposed on Konrad

prohability densities and are seen to follow the patterns reasonably well.

The model is not acceptable in view of the experimental values for pure He

(Fig. 31) and pure N2 (Fig. 32). The model given by (208) yields zero

values for both probabilities.

In view of the experimental probabilities for pure species, the model

given by P3  in Figure 33 offers a chance with both pure cells built in.

Comparison with the probability density is shown in Figure 32 and is

tolerable. Comparison with the pure species data, Figures 31 and 32, shows

however that the weights of the pure cells are too weak.

Since the entropy of mixing is clearly quite low in the flow, the model

of Figure 7 was made determinate by minimizing the entropy (density) of

mixing with respect to A3 * The resulting model is defined as follows.

The weights are those given by Eq. (30) and the bounds on A3 are those of

Eq. (31). For this model, the quantity

n <(S Ma) > (215)

A - A
is sketched in Figure 34. The quantity n is even in A3 with a minimum
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of approximately 2.76 at A3 : 0.5 . A3 is therefore determined as

follows. We call the bounds of A3 L and U . Then

L - A (216)
I-A

U = _ (217)
A

Minimization occurs as follows:

1 _ = __(18

If U < ,then A3 = U (218)

If L < 1<U, then A (219)

If I< L , then A = L (220)2 3

The resulting weights are plotted in Figure 35 and show a good pattern

relative to the probability densities; furthermore, the pure species plots

of Figures 31 and 32 are in reasonable agreement with experiment. The

fact that the model distribution is somewhat He rich is in qualitative

agreement with the low mixing allowed by large-scale transport and with the

data on pure species.

By way of contrast on this point, in Figure 36 we show the entropy

maximized for the same cell structure. It is in poor agreement with the

pure species probabilities.

In Figure 37, we give the r ratio of Eq. (205) for the minimum entropy

model. Although the agreement with experiment on this point is low (-50%),

the opposite extreme of maximal entropy is roughly as good on this count.

Statistical consistency seems to be all that is needed to obtain a reason-

able r . This point will be taken up again later in connection with the

flows with large mass differences.

In Figures 38, 39 and 40 we give the average entropy density, its

fluctuations and its second moment to give an idea of the actual flow

values and their model values.

We now turn to the discussion of the model chosen for large mass

differences. In this case we have at our disposal both the mass fraction

and the density moments (equivalently the mass and the molar fractions).

We have thus chosen a four-cell distribution with one free parameter,
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Figure 41. We give T 1, a , a p~a and p . We note that for

g requires two mixed cells (a discretegiven a a and p~ot , P*min

distribution) and similarly, Pma x requires two pure and one mixed cell

(again a discrete distribution). The algebraic solution of the moment

equations can be summarized as follows. The weights are given in terms of

parameters C. and u as follows:

u - u*
=C 1 (221)

E2 2 u

U* U
3= C (223)

3 u a 3
u * -U

4 =C 4  (224)
u(i - u)(u - a3 )

The singularities of the denominators correspond to one of the mixed cells

degenerating with a pure one or the second mixed cell.

The parameters C. and ui* are in turn given by
1 1

- A 3  (225)
A1 -a 3

a- i- [1- p.(1- A)] (1- A 3 )(26
C 2  a:~ a) (226)

A 3

(1- Aa3) )[- (1- A) -
C3 :(227)

anda

A3(1 - a3 )

C 4 = " i_ 3) Ia 3 A -- a (228)

and 
1-Aa3

a 1-Act3  a a
u*= A (229)

- (1 -Aa 3) p*
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2c-t 1 a OL3~

I-a p (I

u* A (230)1 -a ( -. Aa3 [ [ - )
2

1-A -

(X (P-a - a-)u- - (231)

u4 
= 1A (232)

The concentrations are related by the following formula which is derived

using two s cells and two a cells in the characteristic equation

2(2 P [1 +.].-~) ac3(P2 _ P*[ 1 + 1~. + 1_
U = Kci [1p* + ]+ -L c3 P * + +

(233)

The minimim of the mean entropy occurs when e1 = 0 leaving a "helium

rich" model. If we set

u (234)

using Eqs. (233) and (229), we obtain a quadratic equation for a 3  Its

two roots correspond to the presence of two mixed cells and the interchange-

ability of cell 3 with cell 4. The model is thus fully determinate.

We now compare the model with the two flows of A $ 0 given by Konrad.

We give

1) the ratio r of Eq. (205) (Figs. 42 and 43),

2) the probabilities of pure species (Figs. 44 and 45),

3) the locations and strengths of the Dirac functions superimposed

on the Konrad densities (Figs. 46 and 47).

On all three grounds, the chosen model fares quite well. By contrast, we

show in Figure 48 a maximal entropy model. As was the case for A = 0 ,

the resulting model is substantially worse than the minimum entropy model.

As a final indication of the stringency of our statistical bounds, we

give in Figures 49 and 48 the bounds on the (mass fraction) moment ratio
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with Q = 7 . The bounds are of the same order of magnitude as those

given in the molar plots. The successive tightening of the bounds, given

2, 3 and 4 moments, is clearly indicated. The bounds on Q that were

used in the plot were not fully included in the theoretical discussion.

They are recorded below for completeness.

L <c < U (235)

For given % , a , p.a

La - A (237)
a- p. (1 - A)

U = (237)
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APPENDIX 1. CONVEXITY OF MOMENT DOMAINS

Proof. Let mi m m2 F Mn be given.

For X E (0,1) we show that

+ (1 - X)m2 E Mn (1.1)

Write mI and m2  as

mI = (cO , c,... c nI) (1.2)

m2 = (d0 , d , dn-1 ) (1.3)

Then by computation (i.e., substitute (1.2) and (1.3) into (1.1))

m X c0 + (1- X)d0 , Xc1 + (1- X)dI , ... n +(1- + )dnI

Since mI E Mn , there is a non-negative measure, PI , whose
1 4.

moments are the components of m

m : (C ' Cl "'"Cn-) ( (I , ,..., -I

where
___ 1

lan a..f cnP (a) dc

0

Similarly there is a P2(a) such that

m02 : (do , d1 ,...,dn i) = (2i 2- 2 n-

Consider a new non-negative measure:

P= XPI + (1 - X)P2
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Then,

i, J , ... , an ' I ) =

: (A + (1 A)'j Ala- + (i-X) 2 i, ... aln-1 + (1 X)2an - )

= (Xc0 + (1-X) , Ac1 + (1- , ... , c_ 1 + (1- =)d m

Therefore, the point m is realized precisely by the measure P;

that is, m E Mn
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APPENDIX 2. STANDARD PDF's (s p, of Eq. (75))

1. 1 1 given, I 1

-, s -1 A , Sa 1-A' s - A),
1

2. 1 1given, a=0

J 7] , s=1 , scO , S 1

1
EET

3. a given, -a

-a A

~il S7 A) -+ 1 Os-1 -A

s (i_ = 1 2- A)
s-Z i-A 2 (1 - A) 2

4. a given, a = a

11

- _ 1

(1 - A&)2
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5. a given, sa 2  min

' a

_ -2 -4
SY a -a + a

-77
&2 a

2 2
a a

6. a , a given , Auxiliary = I -

C- 1 - 2a +a
oa

so = :max

-2 78's 8S= I+Aa8 -amx

7. a , a , sa given, s is maximal

7 (- - a s -

a 
-2-s-t-Ic I (a c ~ a a a a_

1 2 3 (b) c I 3 ' a 3 ' 3 =

2 a 3c 3 (3 l a- 3 )

(C) ( -1 + Asa

(d) s-  =  i
i:8 £I -A1i)2
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8. a , a , sc given, s is minimal

(a) + 1Asia

(I- c[ (- )] (- - 2 )A 2

1 c 2 ( b ) x ( 6 1 - 6 2 ) = ( 1 ( I -A) - I - (]

(d) 1  61+62 ' 2 61+62

(e)s ___ __+ S22 (

(1 2a) -2)t2

+6 -7 9



APPENDIX 3. RELATIONS IMPLIED BY THE EQUATION OF STATE

(REDUCTION FORMULAE)

The following relations are given as instantaneous; they also hold as

averages.

2. p. Apa = 1 1

2. p. = P* a =  p - Aa -

T A A2 A A2A

4. P*Ca3 1 P*L-I( 12 13 a2

1 121 3 1 2

3 2

A A A A

2 1 2 1
5.

p2 a2 1 L( )

A2p 2OL = _L (p .1)2 1

3=1 2 1 1A

24 1 i)2 2 1+ a2

T (P - T 3 2
A A A
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APPENDIX 4. APPLICATION OF INSTANTANEOUS BOUNDS TO ENSURE CORRECT
STATISTICS FOR SOLUTIONS OF THE RATE EQUATIONS

We consider a simple example of second-order chemistry in which only

two species participate (although the reaction collision requires three

bodies as dictated by energy and momentum balance). The reaction chosen is

0 + 02 - 30 (4.1)

which idealizes the result of embedding a trace of molecular oxygen in a

bath of hot atomic oxygen (the dominant reaction is dissociation).

The rate equations are

dn o2  _K n n(4.2)
dt -- Kf no no2

dn
0 +2K n n (4.3)

f f2K o o2

which have the conservation law

n + 2no2 =c = const. > 0 (4.4)

corresponding to the conservation of the total number of oxygen atoms, free

and bound in pairs. Equation (4.3) can be rewritten as

dn
o _ 2Kfnono 2 : Kfn0(c - no) (4.5)

Introduce the number fractions

n 2n
B - A o2 (4.6)
c c

Then, (4.4) implies

A + B =1 (4.7)

and, since A and B are positive,

0 < A < 1 , 0 < B < 1 (4.8)
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We rescale for simplicity the time by Kfc and obtain from (4.5)

dA AB -A + (4.9)

The last equality follows from (4.7). From (4.9) we find the equivalent

pairs:

J- + 7 (4.10a)

A = -2A2 + 2A (4.10b)
and

= +B- B (4.11a)

B = 2B 2 7B (4.11b)

First-order closure consists in using (4.10a) together with a model

A2 = F(A) (4.12)

We apply the bounds on A derived in the text (Section II)

A2 < A7 <A (4.13)

and prove the following.

(1) Given A(O) , the solution of any model

A = -J + F(T) (4.14)

where F satisfies the bounds of Eq. (4.13), is bounded above by the

solution of

= -A + A = 0 (4.15)

and bounded below by the solution of

= -A + A2  (4.16)

(II) Equation (4.15) gives the exact solution of (4.9) with the initial

probability density
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P(Ao ) = (1 - A)6(Ao) + To6(A - 1) (4.17)

and Eq. (4.16) gives the exact solution of (4.9) with initial density

P(Ao) = 6(A - A) (4.18)

0 0 0

Subscript is used to denote the time at which the variable is considered.

(III) There exists a nonextremal choice of F which does not yield the

exact solution of (4.9) for the corresponding density. The exact solution

of (4.9) is

A e-t

At= oA0  = (Ao) (4.19)1 - Ao0 + Ao0 e
- t

The initial value of A, A is conveniently expressed in terms of the
0

value of A at t by inverting (4.19)
At e+t

A 1- At +Ae+t (At) (4.20)

t t

which can also be obtained by time reversal of (4.9).

We now consider the above points successively. We write the general

solution of (4.14) as

t
t £ et-X)

At = et + e A (X) dX (4.21)

where A is understood to be a function of A . Since

e >(t 0- ) > 0 for all X (4.22)

we have from (4.13U)

f e A (X) - (X )1 dX <0 (4.23)

0t

and from (4.13L)

o() - X2()] dX>0 (4.24)
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Hence,

ft0e- (t-X)A2( W dX < £ e- (t-X)7(X) dX < f e(t-')A(X) dX (4.25)

lf we add etA°  to each term of the double inequality, we find

e-tA + f -(-)2()dX <
0

t

<e- A 0+ f -t'7()dX <
- 0

t

e-tA 0 + e-(t-X)A(X) dA (4.26)

which proves our first proposition; i.e., the solutions of the extreme

models are the bounds of the solution of any (statistically allowed) model.

Furthermore, the exact solution (4.19) when averaged with (4.17) gives

At = A (4.27)

which is indeed the solution of (4.15). Also, (4.19) when averaged with

(4.18) gives

e-t

At= o (4.28)1 - A 0 + A 0 e
t

which can be readily verified to be the solution of (4.16). We have thus

proven our proposition II and thus demonstrated that the extreme models

represent exact solutions. Therefore, combining I and II, we conclude that

any statistically correct choice for the model F(A) will remain statis-

tically correct.

A simple example of III is the following. Model F(A) by the mean

SMod1. 2  1
A d1 A2 + 2 A (4.29)

A corresponding density is
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P(A 1 6 (A + A [ 5A (Ao+l (A 1) (40)

0( 2 0 2 (1 0)( 0 0A (430

A short calculation shows that the solution of the model equation

A + . -2 ] (4.31)

is
Ae

- t/ 2

it i o+ o et/2  (4.32)

while the average of (4.19) with P(Ao) given by (4.30) is

A-_t
P(1Ae A =-2 1 + -t - (.3

t-A o +A o e
-t P(A0) 0 2 e+A et

0 1 A 0+ A e A0 +A0e

which does not coincide with (4.32) although (4.32) is properly bounded as

discussed above.

The bounds obtained on At from first-order closure (i.e., given Ao

only) are loose bounds. We can, however, proceed to second-order closure

and tighten them by giving Ao and A . The statistical bounds on

(from Section II) are

< A < A2 - (A (4.34)

1A

The equations for A and A are given in (4.10a) and (4.10b). Second-

order closure corresponds to choosing a model for A3

A = G(A ,A (4.35)

which we assume subject to the bounds (4.34). We choose G to correspond

to the lower and upper bounds in (4.34). For the lower bound, we find that

the quantity

K = (4.36)

is a constant of the motion. Integration then yields (A and A given)
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-2 tA2 e-

t =  o (4.37)

A -A 0 + e

The density corresponding to (4.34L) is (from Section II)

P(A ) 6(Ao ) + 6 ° A0  o (4.38)0 T 0-Z
0 A

A simple calculation shows that the exact (4.19) averaged with (4.38) gives

(4.37).

The upper bound is treated conveniently in terms of 4.11a) and (4.11b).

In this case, the constant of the motion is

i2 1 - 2A + 22

K - -A(4.39)

B 1 -2A +A

The corresponding density is

P( )=B 06(A 0 1+ 0 °(A 0 T (4.40)
-7 _
BO  Bo

and the model solution coincides with the average of (4.19) over (4.40) as

-2 e+t

Bt= 0 (4.41)
-B0 +80

which can be written as

" TAt = 2o +  - t

At 0(4.42)

1- 2 + Ao + (- - A) et
0 0 0 0

The bounds given by (4.37) and (4.42) are substantially more stringent than

those given by first-order closure.

As an example of nonextremal choice of second-order closure, we consider
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A = (1 + A)(A - A2) + A(4.43)

corresponding to the density (frozen A model of Section II)

P(Ao) ° 6(A -1) +-6( 6(A° - A1) (4.44)
0 Bo 0 Ao  0Ao10j0

The solution of the model equation is obtained by exploiting the integral

resulting from "-7
dj = -2 (4.45)

and is

At A +o

- 1 1 7 -(
/4 - 0 + 0 x

1 A2 + R2+ e-2 O -2 -  + Ao

A -0 - /4 0 0 2 4 (4.46)T2 + A-2+- e -2t Ao_ 1+/4 - A-+-2
2 4 o 0 -Ao2

while the exact solution (4.19) averaged over (4.44) yields

2 Aet

AtiB - + (I o 1-0 + A0 e-t  (4.47)
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Figure 3. Statistically allowed values of the first two centered moments
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Figure 6. Representation of an arbitrary (A, A) by extreme distributions
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